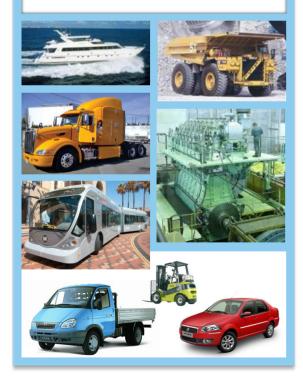


Westport[™] The global leader in natural gas engines.

Emerging developments in heavy duty natural gas engines

Patric Ouellette, C.T.O.


October 2011

Westport at a Glance

market focus

Transformation from petroleum-fueled to alternative-fueled engines.

position

The global leader in gaseous fuel engineering and technology.

strategy

Leverage IP to penetrate markets through relationships with marketleading OEMs.

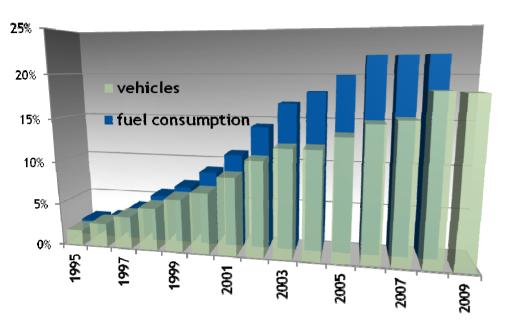
Leverage Technology Across Broad End-Market Applications

Equivalent or Better Performance Without Need for Petroleum-based Fuels

Class-leading emissions performance while maintaining equal horsepower, torque, and efficiency to a diesel-fueled engine

- Today's Technology Spectrum
- Main Technology Drivers by Segments
 - Medium Duty Commercial Vehicles
 - Heavy Duty Commercial Vehicles
 - High HorsePower
- Future Outlook

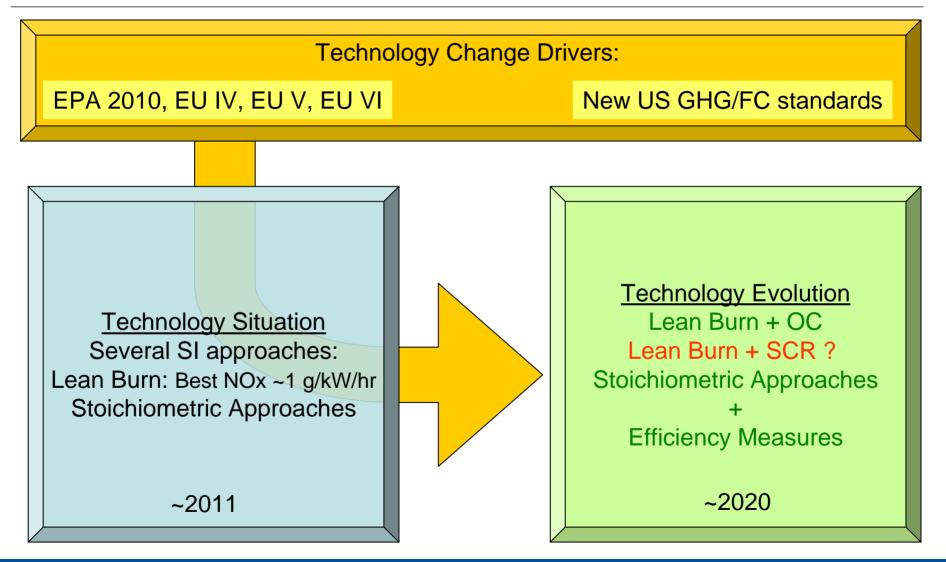
Technology Spectrum - Mobile Application


Application	Displacement	kW/Cyl	Fuel / Year	Gas Technology	Fuel Choice	Uptake
Large Marine	Up to 25,000 L	Up to 1000	Up to 30,000,000 L	 Dual Fuel SI Pre-Chamber 		~100
Off Highway Locomotive Mine Haul	20 to 80 L	150 to 275	~1,000,000 L	N/A	LNG	~0
HD CV ■On-highway trucks	9 to 16 L	~75	~100,000 L	 Direct Injection Dual Fuel Spark Ignited LB or Stoich. 		~10,000
MD CV Buses Refuse	5 to 9 L	~40	~40,000 L	MDE Spark Ignited • Lean • Stoich • Stoich + EGR		~ 100,000
Pass. CarsLD Trucks	Up to 7 L	~40	~5000 L	LDE Spark Ignited	CNG	> 1,000,000

Values are coarse estimates and information is based on the author's knowledge - for illustration purposes

Medium Duty Commercial Vehicles U.S. Transit & Refuse Markets

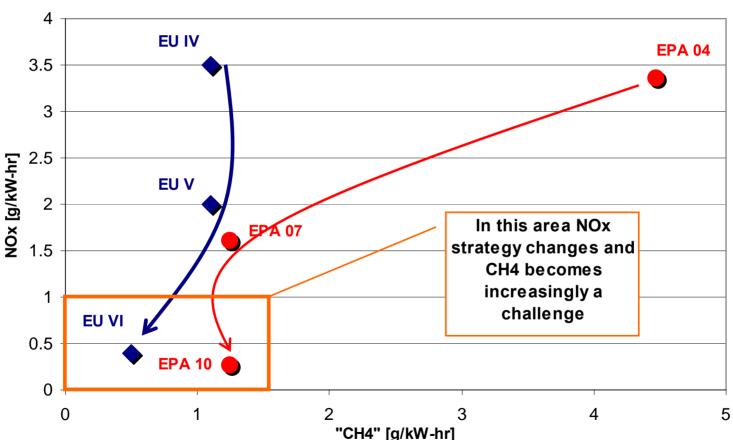
- U.S. natural gas transit bus population:
 - 18.5% of in-service vehicles
 - 22.1% of fuel consumption


Refuse "Trends" 2011

About 80% of the trucks Waste Management purchases this year will be natural-gas trucks. Including the addition of its new truck Tuesday, Waste Management operates 1,000 natural-gas trucks: 51% run on compressed natural gas, or CNG, 49% on LNG.

-latimesblogs.latimes.com/greenspace/2011/07/waste-management-trash-trucks.html

Medium Duty Commercial Vehicles

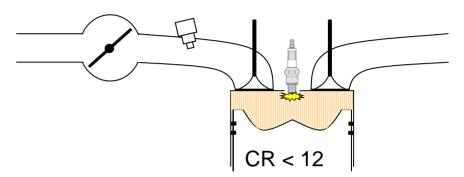

World Emissions Standards for On-Road Heavy-Duty Truck Engines

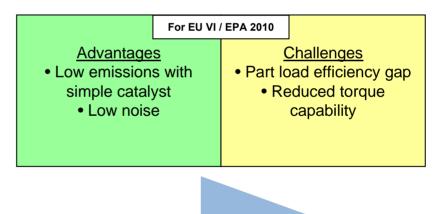
	2007	2008	2009	2010	2011	2012	2013	2014	2015	
USA	US2007			US2010			US2013			
Australia		ADR 80/02 (Eur	o IV, US2004)		ADR 80/03 (Eur	o V, US2007, o	r Japan05)			
	(for new vehicles; e	existing vehicles have	one year longer to	comply)						
Europe	Euro IV		Eui	ro V				Euro VI		
-	(for new vehicles; e	xisting vehicles have	one year longer to	comply)			•			
China	Euro II		Euro III					Euro IV		
	(for new vehicles; e	xisting vehicles have	one year longer to	comply)				a.		
Beijing	Euro III		Euro IV (bus, ga	arbage, & postal	only?)		Euro V			
	(unclear if existing	vehicles have one ye	ar longer to comply)		•	"			
India	Euro II (Nation Wide), Euro III (NCR + 11 Cities) Euro III (Nation Wide), Euro IV (NCR + 11 cities)									
	NCR; National Capetial	Region								

data sources: www.dieselnet.com; "Worldwide Emissions Standards, Heavy Duty & Off-Road Vehicles", Delphi, 2009.

- Emission changes have traditionally been catalysts for new technologies.
- Diesel truck prices have increased due to emission changes.
- Presents an opportunity for natural gas engines

On Highway NGE Emissions Drivers


While EPA does not mandate CH4 emissions, it is assumed here that nmHC/CH4~0.15



Spark-Ignited Natural Gas Engines

- Many different technology levels
- All throttled
- All fumigated
 - The NG is mixed with intake air before compression
 - Requires throttling to control load while maintaining target A/F ratio
 - Requires reduced compression ratio to avoid knock

Mixer Open loop Stoichiometric

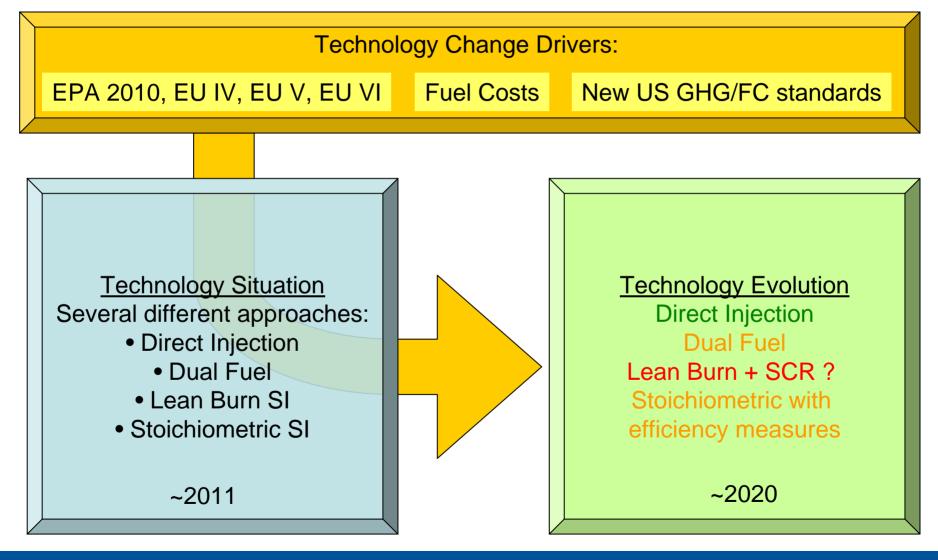
- Single Pt Injection
- Close Loop
- Lean Burn

Multiple Pt Injection

Close Loop w/ full sensing

Stoichiometric with or w/o EGR

Efficiency Measures


HD Commercial Vehicles Weichai Westport LNG Engine Application Example

- WWI WP12NG380E40 product is used in coal field, and coal transportation industry, where the working condition is very harsh and over-loading is frequent.
- These are Spark Ignited, Lean Burn
- There is are more than 1000 HD LNG trucks in this segment in China

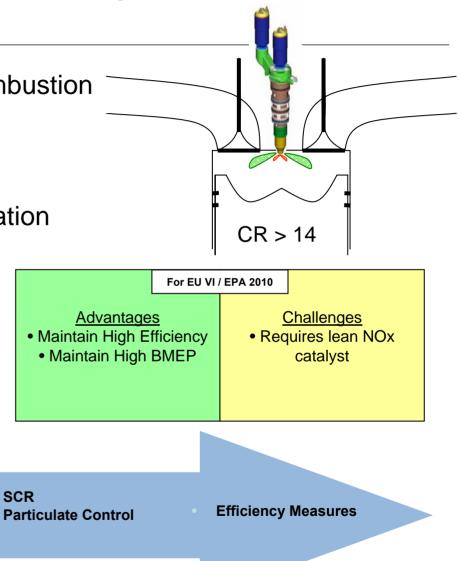
Heavy Duty Commercial Vehicles

EPA CO2 - NHTSA FC Standards

HD Rule EPA - DOT (NHTSA)

HD Engines CO₂ Emissions Standards 900 850 CO2 emissions [g/kW-hr] 800 LHD and MHD-- 8.5% Vocational 750 - 5.0% 700 MHD - Tractor 6.0% 650 - 4.2% 600 HHD - Tractor 550 500 Today 2014 2017

- CO₂ regulation should benefit NG engines
- Diesel engine efficiency will increase, moving the benchmark for NG engines


Direct Natural Gas Fuel Injection - HPDI

- The NG is directly injected in the combustion chamber, late in compression cycle
- Ignition with pilot diesel fuel
 - <5% is diesel during vehicle operation</p>

EGR

Oxidation Catalyst

- No throttling required
- Not knock limited

HPDI HD Truck Applications

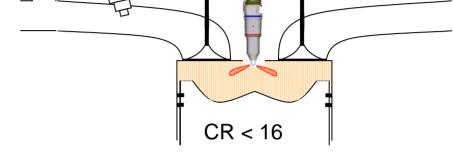
City Of LA Roll Off Trucks

Prometheus Trailer

PG&E Warehouse Trucks

LAX Dump Trucks

LA Sanitation Refuse Transfer


Kenworth HPDI Truck

Dual-Fuel Engines

- Different technology levels
- Retains diesel operation capability
- Under NG operation
 - The NG is mixed with intake air before compression
 - Diesel used for ignition of the lean mixture
 - Requires air fuel ratio control to yield significant substitution
 - As load increases, use more diesel to avoid knock
 - As load decreases, reduce air or use more diesel to avoid misfire

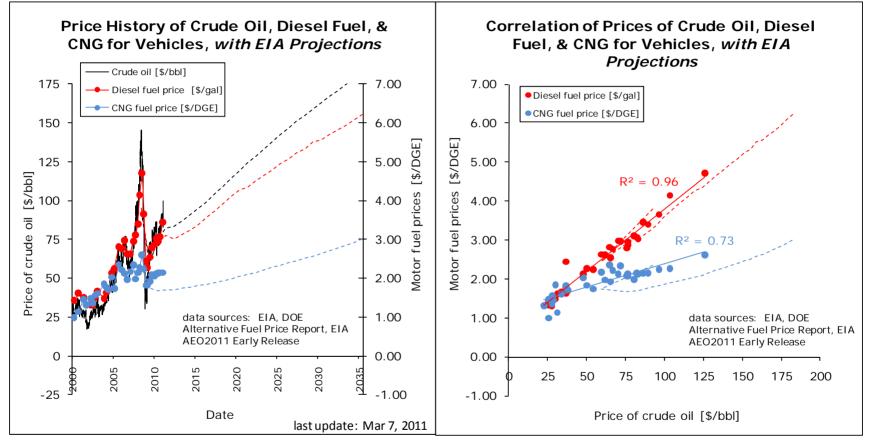
	Challenges
<u>Advantages</u>	 Requires full diesel after-
• Can revert to diesel	treatment Requires full certification under
operation	both diesel and gas operation HC emissions are challenging for
• Maintains good	Euro 6 Reduced fuel savings due to
performance	diesel operation

Mixer	
Open loo	р

- Single Pt Injection
- Close Loop
- Turbo air by-pass

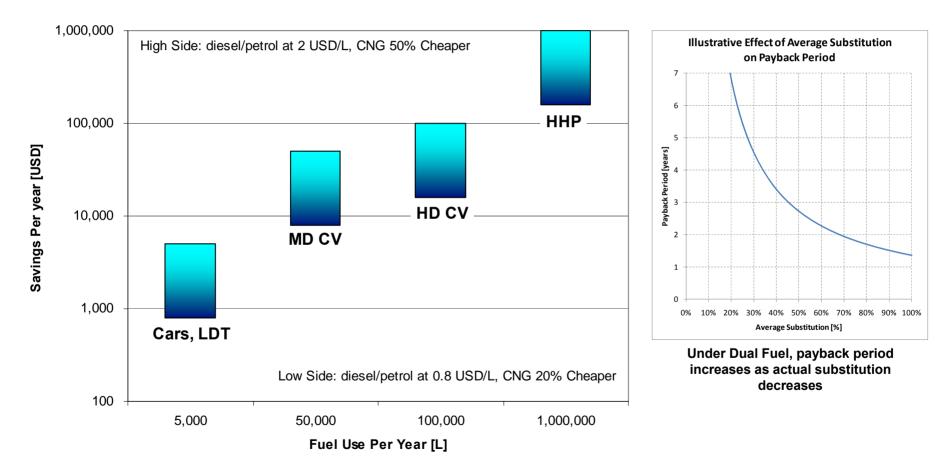
Multiple Pt Injection

TAB


Close Loop w/ full sensing

Throttle

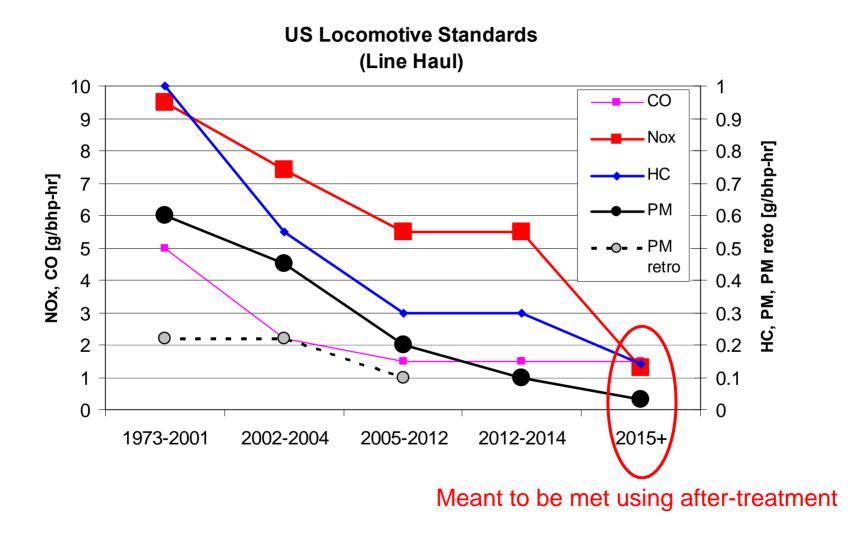
Skip Fire


Projections for future prices for crude oil, diesel fuel, and CNG for vehicles in the USA

- The EIA's most recent (Dec 2010) projections for future fuel prices show:
 - 1. The crude oil-diesel fuel relationship will continue
 - 2. CNG for vehicles will become cheaper than historical trends would predict
 - 3. Ever-higher prices and an ever-widening diesel-CNG price gap, further strengthening the case for NGVs

Fuel Savings Per Year

Values are coarse estimates for illustration purposes



High Horsepower Vehicles

Locomotive Tier IV Standards

Significant High-Horsepower Opportunities

1) Freedonia World Mining Equipment report, November 2009.

- 2) Baker Hughes report, August 2010.
- 3) Burlington Northern 2008 Annual Report.

 Average fuel costs as percentage of all operating expenses for Union Pacific of 22%, 24% and 25% for CY2009, CY2008 and CY2007, respectively.

Over the coming years, we would expect:

- Migration of lean burn spark ignition engines to stoichiometric approaches and adoption of engine efficiency improvement measures in the MD commercial vehicle sector
- Increased deployment of natural gas engines in HD commercial vehicles
 - Increased deployment of direct injection approach
 - Some deployment of dual fuel approaches in situations where infrastructure cannot be well coordinated
- Increased development and demonstration of natural gas in off-highway mobile equipment
 - Technology direction is not settled in these applications, several approaches will likely be tried
 - Direct Injection has the right attributes
- Increased interest of natural gas for marine applications
 - There are some early technology approaches, but applications are very diverse
 - There will likely be experimentation with different technologies for different applications

Westport The global leader in natural gas engines.

Thank You

pouellette@westport.com